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4. Basic Number Theory

Given any positive integer n and any integer a, if we divide a by n, we get a quotient q and a 
remainder r that obey the following relationship:

a=qn + r 0 ≤ r < n; q = [a/n]

where [x] is the largest integer less than or equal to x , the remainder r is often referred to as a 
residue. Example:

a=11; n=7; 11 = 1×7+4; r =4
a=-11; n=7;           -11 = (-2)×7+3; r =3

If a is an integer and n is a positive integer, we define a mod n to be the remainder 
when a is divided by n. thus, for any integer a, we can always write

a= [a/n] ×n + (a mod n)

11 mod 7 =4; -11 mod 7 =3

Modular expression has the following laws:

Commutative laws (a+ b) mod n = (b + a) mod n
(a × b) mod n = (b × a) mod n 

Associative laws [(a + b ) +c] mod n = [a + (b + c)] mod n
[(a × b ) × c] mod n = [a× (b × c)] mod n

      Distributive law [a ×(b × c)] mod n = [(a× b) (a × c)] mod n
      Identities (0 + a) mod n = a mod n; (1 × a ) mod n = a mod n

Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n). 
This is written a≡ b mod n.

73 ≡ 4 mod 23; 21 ≡ -9 mod 10

Note that if a ≡ 0 mod n, then n│a.
The congruent modulo operator has the following properties:

1. a  ≡ b mod n if n│(a - b).
2. (a mod n) = (b mod n) implies a ≡ b mod n.
3. a ≡ b mod n implies b ≡ a mod n.
4. a ≡ b mod n and  b ≡ c mod n. 

To demonstrate the first point, if n│(a-b) then (a-b)=kn for some k. so we can write a = b+kn. 
Therefore, (a mod n)= (remainder when b + kn is divided by n) = (remainder when b is 
divided by n) = (b mod n).

23 ≡ 8 (mod 5) because 23-8 = 15 = 5×3
          -11 ≡ 5 (mod 8) because -11-5 = -16 = 8×-2

81 ≡ 0 (mod 27) because 81-0 = 81 = 27×3
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Modular Arithmetic Operations

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n
2. [(a mod n) - (b mod n)] mod n = (a - b) mod n
3. [(a mod n) × (b mod n)] mod n = (a × b) mod n

The remaining properties are as easily proved. Here are examples of the three properties: 

11mod 8 = 3; 15 mod 8 = 7 
[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11+15) mod 8 = 26 mod 8 = 2
[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 =4
(11-15) mod 8 = -4 mod 8 = 4
[(11 mod 8) × (15 mod 8)] mod 8 = 21 mod 8 = 5
(11 ×15) mod 8 = 165 mod 8 = 5

Exponentiation is performed by repeated multiplication, as in ordinary arithmetic. (we 
have more to say about exponentiation )

To find 117 mod 13, we can proceed as follows:
112 = 121 ≡ 4 mod 13
114 ≡ 42 ≡ 3 mod 13 
117 ≡ 11× 4 × 3 ≡ 132 ≡ 2 mod 13

Thus, the rules for ordinary arithmetic involving addition, subtraction, and 
multiplication carry over into modular arithmetic.

The following tables provide an illustration of modular addition and multiplication 
modulo 8. Looking at addition, the result are straightforward and there is a regular pattern to 
the matrix. Also, as in ordinary addition, there is an additive inverse, or negative, to each 
number in modular arithmetic. In this case, the negative of a number x is the number y such 
that x + y ≡ 0 mod 8. to find the additive inverse of a number in the left-hand column, scan 
across the corresponding row of the matrix to find the value 0; the number at the top of that 
column is the additive inverse; thus 2+6 =0 mod 8. similarly, the  entries in the multiplication 
table are straightforward. In ordinary arithmetic, there is a multiplicative inverse, or 
reciprocal, to each number. In modular arithmetic mod 8, the multiplicative inverse of x is the 
number y such that x × y ≡ 1 mod 8. now, to find the multiplicative inverse of a number from 
the multiplication table, scan across the matrix in the row for the that number to find the value 
1; the number at the top of that column is the multiplicative; thus 3 × 3 = 1mod 8. Note that 
not all numbers mod 8 have a multiplicative inverse; we will discuss this later.

Addition modulo 8
+     0              1         2                 3 4         5   6 7

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
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6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

Multiplication modulo 8
×    0 1          2    3 4         5    6 7

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 0 2 4 6
0 3 6 1 4 7 2 5
0 4 0 4 0 4 0 4
0 5 2 7 4 1 6 3
0 6 4 2 0 6 4 2
0 7 6 5 4 3 2 1

Additive and multiplicative inverses modulo 7

w -w         w-1

0 0 −
1 6 1
2 5 4
3 4 5
4 3 2
5 2 3
6 1 6

Modular Exponentiation 

Throughout this book, we will be interested in numbers of the form

xa (mod n) .

In this and the next coupe of sections, we discuss some properties of numbers raised to a 
power modulo an integer.

Suppose we want to compute 21234 (mod 789). If we first compute 21234, then reduce 
mod 789, we’ll be working with very large numbers, even though the final answer has only 3 
digits. We should therefore perform each multiplication and then calculate the remainder. 
Calculating the consecutive powers of 2 would require that we perform the modular 
multiplication 1233 times. This method is too slow to be practical, especially when the 
exponent becomes very large. A more efficient way is the following (all congruences will be 
mod 789).

Suppose we want to compute 21234 (mod 789). If we firt compute 21234, then reduce 
mod 789, we’ll be working with very large numbers, even though the final answer has only 3 
digits. We should therefore perform each multiplication and then calculate the remainder. 
Calculating the consecutive powers of 2 would require that we perform the modular 
multiplication 1233 times. This is method is too slow to be practical, especially when the 
exponent becomes very large. A more efficient way is the following (all congruences will be 
mod 789).
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We start with 22 ≡ 4 (mod 789) and repeatedly square both sides to obtain the 
following congruences:

24 ≡ 42 ≡ 16
28 ≡ 162 ≡ 256 
216 ≡ 2562 ≡ 49
232 ≡ 34
264 ≡ 367
2128 ≡ 559
2256 ≡ 37
2512 ≡ 580
21024 ≡ 286

Since 1234 = 1024 + 128 + 64 +16 + 2 (this just means that 1234 equals 10011010010 in 
binary), we have

21234 ≡ 286 ∙ 559 ∙ 367 ∙ 49 ∙ 4 ≡ 481 (mod789)

Basic Principles.

If gcd (a, n) = 1, then 1 ≡ aΦ(n)  (mod n).

Note that when n = p is prime, Euler’s theorem is the same as Fermat’s theorem.

Let a, n, x, y be integers with n ≥ 1 and gcd (a, n) = 1. ıf x ≡ y (mod Φ(n)), then ax ≡ ay (mod 
n). In other words, if you want to work mod n, you should work mod Φ(n) in the exponent.

This extremely important fact will be used repeatedly in the remainder of the book. 
Review the preceding examples until you are conviced that the exponents mod 400 = Φ (100) 
and mod 100 are what count (i.e., don’t be one of the many people who mistakenly try to 
work with the exponents mod 1000 and mod 101 in these examples).

Fermat’s Little Theorem and Euler’s Theorem 

Two of the most basic results in number theory are Fermat’s Little Theorems. Originally 
admired for their theoretical value, they have more recently proved to have important 
cryptographic applications.

Fermat’s Little Theorem. If p is a prime and p does not divide a, then

ap-1≡ 1 (mod p).

example.  210 = 1024 ≡ 1 (mod 11). From this we can evaluate 253 (mod 11): write 253 = 
(210)523 ≡ 1523 ≡ 8 (mod 11). Note that when working mod 11, we are essentially working 
with the exponents mod 10, not mod 11. In other words, from 53 ≡ 3 (mod 10), we deduce  
253 ≡ 23 (mod 11). 

Usually, if 2n-1 ≡ 1 (mod n), the number n is prime. However, there are expections: 561 = 3 ∙ 
11 ∙ 17 is composite but 2560 ≡ 1(mod 561).we can conclude that 2560 ≡ 1(mod 11) and 2560 ≡ 1 
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(mod 17).putting things together via the Chinese remainder theorem, we find that 2560 ≡ 1 
(mod 561).  

Another such expection is 1729 = 7 ∙ 13 ∙ 19. however, these exceptions are fairly rare 
in practice. Therefore, if 2n-1 ≠ 1(mod n), it is quite likely that n is prime. Of course, if 2n-1≠ 1 
(mod n) then n cannot be prime. Since 2n-1 (mod n) can be evaluated very quickly, this gives a 
way to search for prime numbers. namely, choose a starting point n0 and successively test 
each odd number n ≥ n0 to see whether 2n-1≠ 1 (mod n). ıf n fails the test, discard it and 
proceed to the next n. when an n passes the test, use more sophisticated techniques to test n 
for primality. The advantage is that this procedure is much faster than trying to factor each n, 
especially since it eliminates many n quickly. Of course, there are ways to speed up the 
search, for example, by first eliminating any n that has small prime factors.

We’ll also need the analog of Fermant’s theorem for a composite modulus n. Let Φ(n)
be the number of integers 1 ≤ a ≤ n such that gcd (a, n) = 1. for example, if n= 10 then there 
are 4 such integers, namely 1,3,7,9. therefore, Φ (10) = 4. often Φ is called Euler’s Φ-
function.

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in number 
theory, referred to as Euler’s totient function and written Φ(n), where Φ(n) is the number of 
positive integers less than n and relatively prime to n.

It should be clear that for a prime number p,

Φ(p) = p -1

Now suppose that we have two prime numbers p and q. then, for n = pq,

Φ(n) = Φ(pq) = Φ(p) × Φ(q) = (p-1) × (q-1)

Same values of Euler’s Totient Function Φ(n)

n            Φ(n)

1   1
2          1
3          2
4 2
5 4
6 2
7 6
8 4
9 6
10 4

n            Φ(n)

21    12
22        10
23        22
24   8
25 20
26 12
27 18
28 12
29 28
30   8
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In particular, for prime p
Φ(p) = p-1

More generally, it can be deduced from the Chinese remainder theorem 
that for any integer n

)
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Where the product is over the distinct primes p dividing n. when n = pq is the product of two 
distinct primes, this yields

Φ(pq) = (p-1) (q-1)

Examples. 
Φ(10 = (2-1) (5-1) = 4,

Φ(120) = 120(1-1/2)(1-1/3)(1-1/5) = 32.
Example: what are the last there digits of 7803 ?

Solution: Knowing the last three digits is the same as working mod 1000. 
since Φ(1000) = 1000 (1-1/2) (1-1/5)= 400, we have 7803 = (7400)273 ≡ 73 ≡ 343 (mod 1000). 
Therefore, the last three digits are 343.

In this example, we were able to change the exponent 803 to 3 because 803 ≡ 3     
(mod Φ (1000)).

Example: compute 243210 (mod 101).
Solution: from Fermat’s theorem, we know that 2100 ≡ 1 (mod101). Therefore, 

243210 ≡ (2100)432 210 ≡ 1432 210 ≡ 1024 ≡ 14 (mod 101).

In this case we were able to change the exponent 43210 to 10 because 43210 ≡ 10 (mod 100).

To summarize, we state the following:

Primitive Roots

Consider the powers of 3 (mod7):

31≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1.

Note that we obtain all the nonzero congruence classes mod 7 as powers of 3. This means that 
3 is a primitive root mod 7 (the term multiplicative generator might be letter, but is not as 
common). The following summarizes the main facts we need about primitive roots.

Proposition. Let g be a primitive root for the prime p.

1. if n is an integer, then gn ≡ 1 (mod p) if and only if n ≡ 0 (mod p-1).
2. if j and k are integers, then gj ≡ gk (mod p) if and only if j ≡ k (mod p-1).

n            Φ(n)

11   10
12         4
13       12
14 6
15 8
16 8
17 16
18 6
19 18
20 8
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When p is prime, it is always possible to choose a so that a, a2, a3,……, ap-1 (all modula p) run 
through the values 1, 2, 3, ….., p-1 in some order. Such a is called a generator or a primitive 
root of unity. It turns out that out that for each prime p there is at least one generator. Indeed, 
the following theorem is true.

Recall from Euler's theorem that, for every a and n that are relatively prime,
                                                              aФ (n)≡ 1 mod n

Where Ф(n), Euler’s totient function, is the number of positive integers less than n and 
relatively prime to n. Now consider the more general expression .

                                                                  am≡ 1mod n                                                   
If a and n are relatively prime, then there is at least one integer m that satisfies Equation 
below namely, m = Φ(n). The least positive exponent m for which equation am≡ 1mod n holds 
is referred to the exponent to which a belongs (mod n)
To see this last points consider the powers of 7, modulo 19:

                     71 =                                                                7   mod 19
                     72 = 49 = 2 × 19 + 11 =                                 11 mod 19
                     73 = 343= 18 × 19 + 1=                                   1 mod 19
                     74 = 2401 = 126 × 19 + 7 =                             7 mod 19
                     75 =16807 = 884 × 19 +11 =                         11 mod 19

There is no point in continuing because the sequence is repeating. In other words, the 
sequence is periodic, and the length of the period is the smallest exponent m such that 7m = 
1(mod 19).
        Table below shows all the powers of a modulo 19 for all positive a .
The length of the sequence for each base value is indicated by shading. Note the following:

1- All sequences end in 1. This is consistent with the reasoning of the preceding few 
paragraphs.

2- The length of sequence divides Φ(19) = 18. That is, an integral number of sequences 
occur in each row of the table.

3- Some of the sequences are of length 18. In this case, it is said that the base integer a 
generates (via powers) the set of nonzero integers modulo 19.

                Each such integer is called a primitive root of the modulus 19. 

Table 7.6 powers of integers, modulo 19

a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1
4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1
5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1
6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1
7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1
8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1
9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1

10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1
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11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1
12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
14 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1
15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1
16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1
17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1
18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

In general, when p is a prime, a primitive root mod p is a number whose powers yield every 
nonzero and non repeated class mod p. there are Φ(p-1) primitive roots mod p. In particular, 
there is always at least one.
In practice, it is not difficult to find one, at least if the factorization of p-1 is known. 
The importance of this notion is that if a is a primitive root of n, _, then its powers

a,a2,…,aФ(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime number p,if a is 
a primitive root of p, then

a,a2,……ap-1

are distinct (modp). For the prime number 19, its primitive roots are 2, 3, 10, 13,14,and 15
     Not all integers have primitive roots. In fact, the only integers with primitive roots are 
those of the form2, 4, pα and 2pα, where p is any odd prime.
More generally, we can say that the highest possible exponent to which a number can belong 
(mod n) is Φ (n). If a number of this order, it is referred to as a primitive root of n. the 
importance of this notion is that if a is a primitive root of n, then its powers

a, a2, …… ,a Φ(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime number p, if a is 
a primate root of p, then

a, a2, ….. , ap-1

are distinct (mod p). for the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.
Not all integers have primitive roots. In fact, the only integers with primitive root are 

those of the form 2, 4, pα, and 2pα, where p is any odd prime.

The Chinese Remainder Theorem

In many situations, it is useful to break a congruence mod n into a system of congruencies 
mod factors of n. Consider the following example. Suppose we know that a number x satisfies 
x ≡ 25 (mod 42). This means that we can write x = 25 + 42k for some integer k. rewriting 42 
as 7∙ 6, we obtain x = 25 + 7 (6k), which implies that x ≡ 25 ≡ 4 (mod 7). Similarly, since
x = 25 + 6(7k), we have x ≡ 25  1 (mod 6). Therefore,

x ≡ 25  (mod 42) → 







).6(mod1

)7(mod4

x

x

the Chinese remainder theorem shows that a system of  congruences can be replaced by a 
single congruence under certain conditions.
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Theorem. Suppose gcd (m, n) = 1. given a and b, there exist exactly one solution x  (mod mn) 
to the simultaneous congruence under certain conditions. 

x ≡ a (mod m), x  ≡ b  (mod n).

Proof. There exist integers s, t such that ms + nt = 1. then ms ≡ 1 (mod n) and nt ≡ 1 (mod m). 
Let x = bms + ant. Then x ≡ ant ≡ a (mod m), and x ≡ bms ≡ b (mod n), as desired. Suppose 
x1 is another solution. Then x ≡ x1 (mod m) and x ≡ x1 (mod n), so x-x1 is a multiple of both 
m and n.

Lemma. Let m, nbe integers with gcd (m,n) = 1. If an integer c is a multiple of both m and n, 
then c is a multiple of mn.

Proof. Let c = mk = nl. Write ms + nt = 1 with integers s, t. multiply by c to obtain     
c = cms + cnt = mnls + mnkt = mn (ls + kt).

To finish the proof of the theorem, let c = x – x1 in the lemma to find that x – x1 is a multiple 
of mn. Therefore, x ≡ x1 (mod mn). This means that any two solutions x to the system of 
congruences are congruent mod mn, as claimed.

Example: solve x ≡ 3 (mod 7), x ≡ 5 (mod 15).
Solution :   x ≡ 80 (mod 105)  (note:  105 = 7 ∙ 15).  Since 80 ≡ 3 (mod 7) and 80 ≡ 5          
(mod 15), 80 is a solution. The theorem guarantees that such a solution exists, and says that it 
is uniquely determined mod the product mn, which is 105 in the present example.

How does one find the solution? One way, which works with small numbers m and n, is to list 
the numbers congruent to b (mod n) until you find one that is congruent to a (mod m). for 
example, the numbers congruent to 5 (mod 15) are

5, 20, 35, 50, 65, 80, 95, …..
Mod 7, these are 5, 6, 0, 1, 2, 3, 4, …… since we want 3 (mod 7), we choose 80.

For slightly larger numbers m and n, making a list would be inefficient. However, a similar 
idea works. The numbers congruent to b (mod n) are of the form b + nk with k an integer, so 
we need to solve b + nk ≡ a (mod m). this is the same as

nk ≡ a – b  (mod m).

since gcd(m, n) = 1 by assumption, there is a multiplicative inverse i for n (mod m). 
multiplication by I gives

k ≡ (a – b)i (mod m).
substituting back into x = b + nk, then reducing mod mn, gives the answer.

Of course, for large numbers, the proof of the theorem gives an efficient method for 
finding x that is almost the same as the one just given.

Example: solve x ≡ 7 (mod 12345), x ≡ 3 (mod 11111).
Solution: first, we know from our calculations in section that the inverse of 11111 (mod 
12345) is i = 2471. therefore k ≡ 2471 (7 - 3) ≡ 9884   (mod 12345).this yields x = 3 + 11111 
≡ 9884 ≡ 109821127   (mod (11111 ∙ 12345)).
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How do you use the Chinese remainder theorem? The main idea is that if you start 
with a congruence mod a composite number n, you can break it into simultaneous 
congruences mod each prime power factor of n, then recombine the resulting information to 
obtain an answer mod n. the advantage is that often it is easier to analyze congruences mod 
primes or mod prime powers than to work mod composite numbers.

Suppose you want to solve x2 ≡ 1 (mod 35). Note that 35 = 5 ∙ 7. we have 

x2 ≡ 1 (mod 35) ↔ 







).5(mod1

)7(mod1
2

2

x

x

now, x2 ≡ 1  (mod 5) has 2 solutions: x ≡ 1 (mod 5). Also, x2 ≡ 1 (mod 7) has 2 solutions: 
1x (mod 7). We can put these together in 4 ways:

x ≡ 1 (mod 5), x ≡ 1 (mod 7)     →       x ≡ 1  (mod 35),

x ≡ 1 (mod 5), x ≡ -1 (mod 7)    →       x ≡ 6   (mod 35),

x ≡ -1 (mod 5), x ≡ 1 (mod 7)     →       x ≡ 29 (mod 35),

x ≡ -1 (mod 5), x ≡ -1 (mod 7)    →       x ≡ 34 (mod 35).

So the solutions of x2 ≡ 1 (mod 35) are x ≡ 1, 6, 29, 34 (mod 35).
In general, if n = p1p2 ….pr is the product of r distinct odd primes, then x2 ≡ 1 (mod n) 

has 2r solutions. This is a consequence of the following. 

Chinese Remainder Theorem (General Form).

Let m1, ……, mk be integers with gcd (mi, mj) =1 whenever i ≠ j. given integers a1, ……, ak, there 
exists exactly one solution x (mod m1… mk) to the simultaneous congruences

x ≡ a1 (mod m1),         x ≡ a2 (mod m2),…..., x ≡ ak (mod mk).

for example, the theorem guarantees a solution to the simultaneous congruences

x ≡ 1  (mod 11), x ≡ -1  (mod 13), x ≡ 1 (mod 17). 

In fact, x ≡ 1871 (mod 11∙13 ∙17) is the answer.
For a procedure that produces the number x in the theorem.

Square Roots Mod n
Suppose we are told that x )77(mod712 has a solution. How do we find one solution, and 
how do we find all solutions? More generally, consider the problem of finding all solutions of 
x ),(mod2 nb where n=pq is the product of two primes. We show in the following that this 
can be done quite easily, once the factorization of n is known. Conversely, if we know all 
solutions, then it is easy to factor n.

Let’s start with the case of square roots mod a prime p. The easiest case is when 
p ),4(mod3 and this suffices for our purposes. The case when p )4(mod1 is more difficult.
Proposition.
Let p )4(mod3 be prime and let y be an integer. Let x ).(mod4/)1( py p
1. If y has a square root mod p, then the square roots of y mod p are .
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2. If y has no square root mod p, then –y has a square root mod p, and the square roots of –y 
are  .
Proof. If y ),(mod0 p all the statements are trivial, so assume y 0 (mod p).Fermat’s 

theorem says that y ).(mod11 pp  Therefore,

).(mod21214 pyyyyx pp  

This implies that (x ),(mod0))( 22 pyxy  so x ).(mod2 py Therefore, at least one of y 

and –y is a square mod p. Suppose both y and –y are squares mod p, say y 2a and -
y .2b Then -1 2)/( ba (work with fractions mod p as in Section 3.3), which means -1 is a 
square mod p. This is impossible when p )4(mod3 (see Exercise 15). Therefore, exactly one 

of y and –y has a square root nod p. If y has a square root mod p then y andx ,2 the two 

square roots of y are . If –y has a square root then x .2 y
Example. Let’s find the square root of 5mod11. Since (p+1)/4=3, we compute 
x )11(mod453  .Since 4 ),11(mod52 the square roots of 5 mod 11 are .4

Now let’s try to find a square root of 2 mod 11.Since (p+1)/4=3, we compute 
2 ).11(mod83 But ),11(mod2982  so we have found  a square root of -2 rather than of 
2.This is because 2 has n square root mod 11.

We now consider square roots a composite modulus. Note that
x )77(mod712 means that

)7(mod1x and x ).11(mod4
The Chinese remainder theorem tells us that a congruence mod 7 and a congruence mod 11 
can be combined into a congruence mod 77. For example, if )7(mod1x and x ),11(mod4
then x ).77(mod15 In this way, we can combine in four ways to get the solutions

x ,15 ).77(mod29
Now  let’s turn things around. Suppose n=pq is the product of two primes and we know the 
four solutions ,ax  b of x ).(mod2 ny

Finding the Greatest Common Divisor 

One of the basic techniques of number theory is Euclid’s algorithm, which is a simple 
procedure for determining the greatest common divisor of two positive integers. An extended 
form of Euclid’s algorithm determines the greatest common divisor of two positive integers 
and, if those numbers are relatively prime, the multiplicative inverse of one with respect to the 
other.

Euclid’s algorithm is based on the following theorem: For any nonnegative integer a and 
any positive integer b,

gcd(a, b) = gcd (b, a mod b)

gcd (55, 22) = gcd (22, 55 mod 22) = gcd (22, 11)

to see this, consider if d = gcd (a, b). Then, by the definition of gdc, d│a and d│b. for any 
positive integer b, a can be expressed in the form

a = kb + r ≡ r  mod b
a mod b = r
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therefore, (a mod b) = a – kb for some integer k. But because d│b, it also divides kb. We 
also have d│a. therefore, d│(a mod b). This shows that d is a common divisor of b and   
(a mod b). conversely, if d is a common divisor of b and (a mod b), then d│kb and thus    
d│[kb + (a mod b)], which is equivalent to d│a. Thus, the set of common divisors of a 
and b is equal to the set of common divisors of b and (a mod b). Therefore the gcd of one 
is the same as the gcd of the other, proving the theorem.

Equation can be used repetitively to determine the greatest common divisor.

gcd (18,12) = gcd (12, 6) = gcd (6, 0) = 6
gcd (11,10) = gcd (10, 1) = gcd (1, 0) = 1

Euclid’s algorithm makes repeated use of equation to determine the greatest common 
divisor, as follows. The algorithm assume d>f > 0. It is acceptable to restrict algorithm to 
positive integers because gcd (a, b) = gcd (|a|, |b|).

The alert reader may ask how we can be sure that this process terminates. That is, how can we 
be sure that at some point Y divides X? ıf not, we would get an endless sequence of positive 
integers, each one strictly smaller than the one before, and this is clearly impossible.

To find the gcd (1970, 1066),
1970 = 1×1066+904 gcd(1066, 904)
1066 = 1×904+162 gcd(904,162)
904 = 5×162+94 gcd(162, 94)
162 = 1×94+68 gcd(94, 68)
94 = 1×68+26 gcd(68, 26)
68 = 2×26+16 gcd(26, 16)
26 = 1×16+10 gcd(16, 10)
16 = 1×10+6 gcd(10, 6)
10 = 1×6+4 gcd (6, 4)
6 = 2×2+2 gcd(4, 2)
2 = 2×2+0 gcd(2, 0)
Therefore, gcd (1970, 1066) = 2. 


